Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Taibah Univ Med Sci ; 19(2): 429-446, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38440085

ABSTRACT

Objectives: Schistosomiasis, a neglected tropical disease, is a leading cause of mortality in affected geographic areas. Currently, because no vaccine for schistosomiasis is available, control measures rely on widespread administration of the drug praziquantel (PZQ). The mass administration of PZQ has prompted concerns regarding the emergence of drug resistance. Therefore, new therapeutic targets and potential compounds are necessary to combat schistosomiasis. Methods: Twenty-four potent derivatives of PZQ were optimized via density functional theory (DFT) at the B3LYP/6-31G∗ level. Quantitative structureactivity relationship (QSAR) models were generated and statistically validated, and a lead candidate was selected to develop therapeutic options with improved efficacy against schistosomiasis. The biological and binding energies of the designed compounds were evaluated. In addition, molecular dynamics; drug-likeness; absorption, distribution, metabolism, excretion, and toxicity (ADMET); and DFT studies were performed on the newly designed compounds. Results: Five QSAR models were generated, among which model 1 had favorable validation parameters (R2train: 0.957, R2adj: 0.941, LOF: 0.101, Q2cv: 0.906, and R2test: 0.783) and was chosen to identify a lead candidate. Other statistical parameters for the chosen model included variance inflation factor values ranging from 1.242 to 1.678, and a Y-scrambling coefficient (cRp2) of 0.747. Five new compounds were designed with improved predicted activity (ranging from 5.081 to 7.022) surpassing those of both the lead compound and PZQ (predicted pEC50 of 5.545). Molecular dynamics simulation revealed high binding affinity of the proposed compounds toward the target receptor. ADMET and drug-likeness assessments indicated adherence to Lipinski's rule of five criteria, thereby suggesting pharmacological and oral safety. In addition, DFT analysis indicated resistance to electronic alteration during chemical reactions. Conclusion: The proposed compounds exhibited potential drug characteristics, thus indicating their suitability for further investigation to enhance schistosomiasis treatment options.

2.
J Taibah Univ Med Sci ; 18(1): 32-44, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36398020

ABSTRACT

Objective: This research aims to develop a mathematical model that relates the structural features of noscapine with anti-tumor activity, to explains the mode of binding between noscapine compounds and the target receptor tubulin by docking analysis. By considering the results of docking analysis and predictions of pharmacokinetic properties/drug likeness, we designed novel noscapine compounds as anti-tumor agents against pancreatic cancer. Methods: We used an in silico quantitative structure-activity relationship (QSAR) approach, molecular docking analysis and online tools for pharmacokinetics and drug likeness prediction to develop novel compounds. Results: A QSAR model with good validations parameters and quality of fit (R2 = 0.9731, Q2 CV = 0.9434, R2 adj = 0.9647 and R2 test set = 0.8343) was built utilizing 70% of the dataset as a training set and the remaining 30% as an external validation to ascertain its predictive capability. Three novel compounds were designed: D3, D4 and D6 with binding scores of -11.2, -10.2 and 10.6 kcal/mol, respectively, exhibiting high affinity towards the tubulin receptor than the template (parent compound) and the co-crystallized ligand (E∗) with a binding score of 9.2 kcal/mol. Conclusion: The QSAR approach and molecular docking analysis is an important approach for modern drug discovery. Pharmacokinetics studies of the selected novel compounds revealed good drug properties and can be used as candidate compounds for the development of anti-tumor agents for pancreatic cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...